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Abstract—A novel water-soluble asymmetrical sugar-phthalocyanine was prepared via a statistical cross-condensation of tetra-
kis(1,2:3,4-di-O-isopropylidene-a-DD-galactopyranos-6-yl)phthalonitrile with phthalonitrile. The new compound, with amphiphilic
character, can be useful as a selective photosensitizer in photodynamic therapy, as well as for constructing phthalocyanine-based
supramolecular systems.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A great scientific interest has been focused on the
synthesis of phthalocyanines (Pcs) due to several tech-
nological applications already found for this type of
compounds.1–4 One of the most promising applications
is their use as photosensitizers in photodynamic therapy
(PDT), an emerging treatment for a large variety of
tumours and infectious diseases.5–8

Pcs have adequate photophysical features to be used as
photosensitizers in PDT, such as strong absorption bands
in the 600–800 nm region and efficient singlet oxygen
production.9,10 However, a serious limitation of Pcs is
their insolubility in physiological fluids, requiring usually
the use of difficult formulations,11 such as incorporation
into liposomes, biopolymers or cyclodextrins.12,13

Water-soluble anionic sulfonated phthalocyanines have
received great attention with regard to photodynamic
efficacy,14 but the purification of these compounds can
be a problem and the final products are typically
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mixtures of several sulfonated derivatives. Furthermore,
these compounds have been observed to aggregate at
relatively low concentrations in aqueous media, which
results in loss of the photosensitizing ability. Cationic
phthalocyanine photosensitizers15,16 have also not found
a broader application in PDT.

The design of molecules that can target specific cells is
an important goal in the development of new drugs
for PDT. This goal can be reached by incorporating
selected biological subunits on the photosensitizer. Stud-
ies with a range of porphyrin–carbohydrate conjugates
have shown that this type of compounds are efficient
photosensitizers in PDT.7,17 Similarly, we expect that
the conjugation of phthalocyanines with carbohydrate
residues may increase their water solubility, avoiding
the use of a delivery system to tumour cells, and also
to provide better tumour specificity.18,19

Recently, we described the synthesis of covalently linked
b-cyclodextrin-Pcs dyads, which corresponds to a new
methodology to obtain stable water solutions of neutral
Pcs.20 Maillard et al.21 and Hanack and co-workers22

have described the preparation of water-soluble ‘sym-
metrically’ substituted phthalocyanines with four DD-glu-
cose units. In these two cases, each DD-glucose unit is
linked to a different isoindolyl group by the hydroxyl
group located in the C-3 or C-1 carbons, respectively.
Here, we describe the synthesis of asymmetrical
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glycophthalocyanines with four DD-galactose units linked
to the same isoindolyl group by the hydroxyl group
located in carbon C-6. While in the two previous exam-
ples the glycophthalocyanines are obtained as mixtures
of positional isomers, in our case a single isomer is
formed.

Our synthetic methodology is presented in Scheme 1. It
involves, as the first step, the preparation of glyco-
phthalonitrile 1.23 This phthalonitrile was obtained by
nucleophilic substitution of the four fluorine atoms of
tetrafluorophthalonitrile by four 1,2:3,4-di-O-isopro-
pylidene-a-DD-galactopyranose units. Phthalocyanine 2
was then prepared by statistical cross-condensation of
glycophthalonitrile 1 with an excess of 1,2-dicyano-
benzene, in the presence of zinc chloride.24 The reaction
was carried out in refluxing N,N-dimethylaminoethanol
(DMAE), affording the desired Pc 2 and the symmetric
zinc Pc formed by self-condensation of phthalonitrile.
The desired product was purified by silica gel column
chromatography using a gradient of petroleum ether/
THF as the eluent. The removal of the carbohydrate
protection groups in compound 2 was performed with
aqueous TFA at room temperature.25 The water-soluble
Pc 3 was purified by reverse-phase column chromato-
graphy using a gradient of H2O/THF as the eluent.

The structures of products 1–3 were confirmed by NMR
spectroscopy, UV–vis and HRMS-MALDI-TOF. The
1H NMR spectrum of 1 shows a multiplet at 1.3–
1.6 ppm due to the resonances of the isopropylidene
methyl groups and five multiplets from 4.1 to 5.5 ppm
attributed to the resonances of the protons of the carbo-
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Scheme 1. Reagents and conditions: (i) NaH, toluene, N2, 70 �C; (ii) ZnCl2,
hydrate units. No signals are observed in the 19F NMR
spectrum of 1, confirming the substitution of all fluorine
atoms by the monosaccharide units.

The 1H NMR spectrum of compound 2 shows two dis-
tinct regions: the signals at lower field (between d 7.8
and 9.0 ppm) are due to the protons of the Pc moiety,
while the signals at higher field (between 1.2 and
5.6 ppm) are due to the protons of the carbohydrate
units. The resonances due to the isopropylidene protons
appear between 1.2 and 1.8 ppm and the ones due to the
other protons of the carbohydrate units appear between
4.4 and 5.6 ppm.

The 1H NMR spectrum of compound 3 in DMSO-d6 is
well-resolved and confirms the deprotection of the
carbohydrate moieties (disappearance of the signals
due to the isopropylidene protons). It shows two multi-
plets between 9.41 and 9.70 ppm due to the resonances
of the six Pc-alpha protons and a broad singlet at
8.25 ppm due to the six Pc-beta protons. The signals
corresponding to proton H-1 of the galactosyl moieties
(in alpha and beta configurations) appear between 6.20
and 6.85 ppm, and the resonances of the remaining
galactosyl protons appear between 3.51 and 5.45 ppm.

High resolution MS spectra (MALDI-TOF)26 of com-
pounds 1–3 provided a definitive proof for their charac-
terization. In the case of the phthalonitrile derivative 1,
NaI was added for improving ionization results. In com-
pounds 2 and 3, a better ionization took place in the ab-
sence of NaI. Peaks corresponding to the molecular ions
of compounds 2 and 3 were detected but, as expected,
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DMAE, N2, reflux; (iii) TFA/H2O (9:1), rt.
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Figure 1. UV–vis spectra of Pc 3 in DMSO (—) and in H2O ( ).
Both solutions are 10 lM.
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complex isotopic distributions were observed. The cor-
responding monoisotopic peak was selected for compar-
ison with the standard.

Figure 1 shows the UV–vis spectra of dyad 3 in DMSO
and in water. The spectrum in DMSO is well-defined,
showing no intermolecular aggregation. The sharp Q-
band at 687 nm indicates monomeric species in solution.
However, the optical features of this compound in water
differ remarkably from those in DMSO. In water, the
intensity of the Q-band is much lower than in DMSO,
indicating aggregation due to cofacial arrangement of
the Pcs.27a,b The B-band is slightly shifted to shorter
wavelength (332 nm), whereas the Q-band is also blue-
shifted and split into two main absorptions at 638 and
670–680 nm. The solubility of compound 3 in water
was determined as being 3.2 mg/mL.
2. Outlook

An easy methodology to access water-soluble phththalo-
cyanines has been described. The asymmetric structure
of the new water-soluble Pc 3 provides an amphiphilic
character useful for drug administration (hydrophilicity)
and transport through the organism (lipophilicity).28 In
addition, considering the specific affinity of carbo-
hydrates for cancer cells and their strong influence on
the bioavailability of the corresponding conjugates,
good perspectives can be anticipated for this new gener-
ation of photosensitizers based on Pc-carbohydrate
derivatives. Galactosyl-phthalonitrile 1 can also be used
as synthon for preparing water-soluble nonlinear opti-
cally active subphthalocyanines,29 as well as novel
amphiphilic phthalocyanines with potential application
in the construction of Pc-based nanostructures.30
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for their postdoctoral grants.
Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.tetlet.2006.10.155.
References and notes

1. Kadish, K. M.; Smith, K. M.; Guilard, R. In The
Porphyrin Handbook; Academic Press: San Diego, 2003;
Vols. 15–20.

2. McKeown, N. B. Phthalocyanine Materials: Synthesis,
Structure and Function; Cambridge University Press:
Cambridge, 1998.

3. Leznoff, C. C.; Lever, A. B. P. Phthalocyanines: Properties
and Applications; VCH: Weinheim, 1989, 1993, 1996; Vols.
1–4.

4. (a) de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres,
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